Acta Crystallographica Section E

Structure Reports

Online
ISSN 1600-5368

John E. Davies,* Anthony J. Kirby and Christo D. Roussev

Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, England

Correspondence e-mail: jed2@cus.cam.ac.uk

Key indicators

Single-crystal X-ray study
$T=180 \mathrm{~K}$
Mean $\sigma(\mathrm{C}-\mathrm{C})=0.006 \AA$
R factor $=0.043$
$w R$ factor $=0.108$
Data-to-parameter ratio $=10.6$
For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.
(C) 2001 International Union of Crystallography Printed in Great Britain - all rights reserved

Pentacyclohexyloxyphosphorane

The crystal structure of pentacyclohexyloxyphosphorane, $\mathrm{C}_{30} \mathrm{H}_{55} \mathrm{O}_{5} \mathrm{P}$, has been determined at 180 (2) K . In space group $P 1$, there are four independent molecules in the unit cell, each displaying trigonal bipyramidal geometry at the P atom.

Comment

Pentaoxyphosphoranes $(R \mathrm{O})_{5} \mathrm{P}$, where two or three of the $\mathrm{O} R$ groups are OH , or ionized to O^{-}, are of interest as potential intermediates in the hydrolysis reactions of phosphodiesters. Their lifetimes and protonation states are of paramount importance in, for example, understanding the mechanisms of action of nuclease enzymes (Perreault \& Anslyn, 1997). However, such species are too short-lived for them to be isolated, so that the $\mathrm{p} K_{a}$ values of the OH groups cannot be measured directly.

(I)

A possible solution to this problem lies in the simple linear relationship (Kirby, 1994) between the length of a $\mathrm{C}-\mathrm{OX}$ bond and the $\mathrm{p} K_{a}$ of the acid $\mathrm{HO} X$: the stronger the acid, the longer the bond. The sensitivity of this bond length to the $\mathrm{p} K_{a}$ depends on the substituents on C (Kirby, 1994); a good correlation has been established for derivatives of cyclohexanol (Jones et al., 1992), and this correlation can, in principle, be used to estimate $\mathrm{p} K_{a}$ values of compounds $\mathrm{HO} X$ too unstable to exist as the free acid or anion. For example, the method has been used recently to estimate the $\mathrm{p} K_{a}$ of $2,4-$ dinitrobenzenesulfenic acid (Green et al., 2000). As a first step, we have prepared the title compound, pentacyclohexyloxyphosphorane $(\mathrm{CyO})_{5} \mathrm{P}$, with the maximum number of cyclo-hexyl-O X bonds.

Experimental

The title compound was prepared using the method of Chang et al. (1977). It is liquid at room temperature, melting just above 273 K . The crystal was obtained by slow cooling in a freezer and transferred to the diffractometer with the aid of a microscope equipped with a cold stage.

Crystal data

$\mathrm{C}_{30} \mathrm{H}_{55} \mathrm{O}_{5} \mathrm{P}$
$M_{r}=526.71$
Triclinic. $P 1$
$a=10.0853(2) \AA$
$b=10.0892(2) \AA$
$c=30.1129(7) \AA$
$\alpha=88.403(2)^{\circ}$
$\beta=88.589(9)^{\circ}$
$\gamma=90.0210(10)^{\circ}$
$V=3061.95(11) \AA^{3}$

$$
\begin{aligned}
& Z=4 \\
& D_{x}=1.143 \mathrm{Mg} \mathrm{~m}^{-3} \\
& \text { Mo } K \alpha \text { radiation } \\
& \text { Cell parameters from } 37465 \\
& \quad \text { reflections } \\
& \theta=1.0-25.0^{\circ} \\
& \mu=0.12 \mathrm{~mm}^{-1} \\
& T=180(2) \mathrm{K} \\
& \text { Block, colourless } \\
& 0.37 \times 0.32 \times 0.32 \mathrm{~mm}
\end{aligned}
$$

Data collection
Nonius KappaCCD diffractometer
Thin-slice ω and φ scans
22250 measured reflections
13809 independent reflections
12562 reflections with $I>2 \sigma(I)$

$$
\begin{aligned}
& R_{\text {int }}=0.042 \\
& \theta_{\max }=25.0^{\circ} \\
& h=-11 \rightarrow 9 \\
& k=-11 \rightarrow 8 \\
& l=-35 \rightarrow 33
\end{aligned}
$$

Refinement

Refinement on F^{2}
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.044$
$w R\left(F^{2}\right)=0.108$
$S=1.06$
13809 reflections
1297 parameters
H -atom parameters constrained

$$
\begin{aligned}
& w=1 /\left[\sigma^{2}\left(F_{o}{ }^{2}\right)+(0.0381 P)^{2}\right. \\
& \quad+1.8978 P] \\
& \text { where } P=\left(F_{o}{ }^{2}+2 F_{c}^{2}\right) / 3 \\
& (\Delta / \sigma)_{\max }=0.001 \\
& \Delta \rho_{\max }=0.21 \mathrm{e} \AA^{-3} \\
& \Delta \rho_{\min }=-0.28 \mathrm{e} \AA^{-3} \\
& \text { Absolute structure: Flack (1983), } \\
& 3513 \text { Friedel pairs } \\
& \text { Flack parameter }=-0.01(7)
\end{aligned}
$$

Despite the suspicious cell dimensions (a approximately equal to b, α approximately equal to β), many strenuous efforts to locate extra symmetry all failed conspicuously. There is a pseudo- C-centred monoclinic cell, but $R_{\text {int }}$ for this setting is $c a 0.26$. The refinement shows no anomalies: with anisotropic displacement parameters for all non- H atoms, all H atoms placed geometrically, and no constraints on other atoms, there are no unusual bond distances, displacement parameters or correlation coefficients. Furthermore, and perhaps most significantly, the orientation of the cyclohexyl groups in one of the four independent molecules in the asymmetric unit (with atom labels ending in _4) is noticeably different from that observed for the other three molecules. From this we conclude that the space group really is $P 1$, as described.

Data collection: COLLECT (Nonius, 1998); cell refinement: $H K L$ SCALEPACK (Otwinowski \& Minor, 1997); data reduction: $H K L$ DENZO (Otwinowski \& Minor, 1997) and SCALEPACK; program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: $X P$ (Sheldrick, 1993); software used to prepare material for publication: SHELXL97.

Figure 1
One of the four independent molecules in the asymmetric unit of (I) with displacement ellipsoids at the 50% probability level. In the deposited tables, independent molecules are distinguished by $_n(n=1-4)$.

We thank the EPSRC for financial assistance towards the purchase of the Nonius CCD diffractometer. The crystal was cooled with an Oxford Cryosystems Cryostream coller.

References

Chang, L. L., Denney, D. B., Denney, D. Z. \& Kazior, R. J. (1977). J. Am. Chem. Soc. 99, 2293-2297.
Flack, H. D. (1983). Acta Cryst. A39, 876-881.
Green, A. J., Giordano, J. \& White, J. M. (2000). Aust. J. Chem. 53, 285-292.
Jones, P. G., Kirby, A. J., Parker, J. K., Percy, J. M. \& Su, M. D. (1992). J. Chem. Soc. Perkin Trans. 2, pp. 549-558.
Kirby, A. J. (1994). Adv. Phys. Org. Chem. 29, 87-183.
Nonius (1998). COLLECT. Nonius BV, Delft, The Netherlands.
Otwinowski, Z. \& Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter \& R. M. Sweet, pp. 307-326. London: Academic Press.
Perreault, D. M. \& Anslyn, E. V. (1997). Angew. Chem. Int. Ed. Engl. 36, 432450.

Sheldrick, G. M. (1993). XP. University of Göttingen, Germany.
Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.

